Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Ming Yu, Xin Chen and Zuo-Liang Jing*

College of Sciences, Tianjin University of Science and Technology, Tianjin 300222, People's Republic of China

Correspondence e-mail: jz174@tust.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.051$
$w R$ factor $=0.116$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Isonicotinic acid (2-hydroxy-3-methoxybenzylidene)hydrazide

The title compound, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$, was prepared using 2-hydroxy-3-methoxybenzaldehyde and 4-pyridinecarboxylic acid hydrazide. In the crystal structure, an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond $[\mathrm{H} \cdots \mathrm{N}=1.83$ (2) \AA] appears to stabilize the planar conformation of the molecule, while intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds $[\mathrm{H} \cdots \mathrm{N}=$ 2.213 (15) \AA] link molecules into extended chains along [001].

Comment

Schiff bases have received considerable attention in the literature because of their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). The crystal structure determination of the title compound was undertaken as part of a study to investigate the physical and chemical properties of the compound.

Received 14 March 2005
Accepted 8 April 2005
Online 16 April 2005

A view of (I) is shown in Fig. 1. The C7-C8, C7-N3 and $\mathrm{N} 2-\mathrm{N} 3$ bond lengths of 1.451 (3) $\AA, 1.279$ (3) \AA and 1.370 (2) Å, respectively, are consistent with those in a related structure we determined recently (Jing et al., 2005). The pyridine ring $(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1)$ is planar, the r.m.s. deviation of the fitted atoms being $0.0105 \AA$, and the $\mathrm{C} 6-\mathrm{O} 1-\mathrm{N} 2-\mathrm{N} 3$ portion of the structure is planar with an r.m.s. of $0.0082 \AA$. In addition, the O-vanillin moiety $(\mathrm{O} 2-$ $\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13)$ is also essentially

Figure 1
A view of the title compound, with 30% probability displacement ellipsoids.

Figure 2
Intermolecular hydrogen bonding interactions (dashed lines) in (I).
planar, with an r.m.s. deviation of $0.0244 \AA$. The dihedral angles between the pyridine group and the O-vanillin group with the $\mathrm{C} 6-\mathrm{O} 1-\mathrm{N} 2-\mathrm{N} 3$ portion are $22.86(1)^{\circ}$ and $7.49(1)^{\circ}$, respectively. The latter value suggests that the intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 1) stabilizes the planar conformation of part of the molecule. In the crystal structure, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ intermolecular hydrogen bonds link molecules into extended chains along [001] (see Fig. 2).

Experimental

An anhydrous ethanol solution of 2-hydroxy-3-methoxybenzaldehyde ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an anhydrous ethanol solution of 4-pyridinecarboxylic acid hydrazide ($1.37 \mathrm{~g}, 10 \mathrm{mmol}$), and the mixture was stirred at 343 K for 5 h under nitrogen. A yellow precipitate appeared. The product was isolated and recrystallized from ethanol, and then dried in vacuo to give the pure compound in 78% yield. Yellow single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of a solution in ethanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \\
& M_{r}=271.27 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=7.671(2) \AA \\
& b=16.268(5) \AA \\
& c=10.884(3) \AA \\
& \beta=110.415(5))^{\circ} \\
& V=1273.0(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD
2603 independent reflections
diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.968, T_{\text {max }}=0.984$
7239 measured reflections
1752 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-9 \rightarrow 9$
$k=-20 \rightarrow 19$
$l=-13 \rightarrow 6$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.116$
$S=1.06$
2603 reflections
191 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0434 P)^{2}\right. \\
& \quad \quad+0.2950 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXLL97 } \\
& \text { Extinction coefficient: } 0.0053(15)
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 3$	$0.859(10)$	$1.826(17)$	$2.591(2)$	$147(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.863(9)$	$2.214(10)$	$3.068(3)$	$171(2)$

Symmetry code: (i) $x, \frac{3}{2}-y, \frac{1}{2}+z$.

H atoms bonded to C atoms were included in calculated positions $[\mathrm{C}-\mathrm{H}=0.93-0.96 \AA]$ and refined using a riding-model approximation with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The H atoms bonded to N and O atoms were refined independently with isotropic displacement parameters.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

References

Bruker (1999). SMART, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
Hadjoudis, E., Vittorakis, M. \& Moustakali-Mavridis, J. (1987). Tetrahedron. 43, 1345-1360.
Jing, Z. L., Yu, M., Chen, X., Diao, C. H., Deng, Q. L. \& Fan, Z. (2005). Acta Cryst. E61, o145-o146.
Parashar, R. K., Sharma, R. C., Kumar, A. \& Mohan, G. (1988). Inorg. Chim. Acta. 151, 201-208.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
Sheldrick G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

